

Italian Roads in the 20th Century FROM RUPTA TO HIGH-QUALITY ROAD AND MOBILITY MANAGER A century-long process

Gabriele Camomilla

- ANAS Spa National Roads Network-Italy
- Terotechnologist -Road Construction and Management
- g.camomilla@stradeanas.it

THE ITALIAN AND EUROPEAN ROAD CULTURE

EUROPEAN ROADS "SPEAK" LATIN LANGUAGE

From the times of the ancient Rome....

VIA SILICE STRATA νία -> VIA RUPTA VEHA->VEHERE for absence of maintenance The place where the goods pass but also used -PAVIMENTUM -NUCLEUS Pilgrims of Jubilea RUDERATIO follow the "ROTTA" STATUMEN Today in Italy is only a sailor's word STRASSE WEG ROUTE Z RUTA STRADA WAY ROAD 007

100 YEARS AGO, IN ITALY

Roads were always "ruptae" (broken)

Many roads were "white"

and many heavy vehicles had one HP engine

1924 MOTORWAY's BIRTH

ROAD WITH GOOD GEOMETRY, WITHOUT CROSSROADS, ONLY FOR ENGINED CARS

Engineer Pietro Puricelli

One Carriageway

Designed in 1922 open 1924 by Società Anonima Autostrade

the first modern Concessionary Company

MOTORWAY WAS BORN IN ITALY

1st CONCRETE PAVEMENT

ROAD WITH GOOD GEOMETRY, WITHOUT CROSSROADS, ONLY FOR ENGINED CARS

Cantú

COMO

VARESE

NOVARA

Tradate

All motorways had pavement made of reinforced concrete slabs with an average thickness of 20 cm.

Engineer Puricelli was involved also in the design of the German Motorway Network with concrete pavements, built before II World War **23e Congrès mondial de la Route - Paris 2007**

MODERNITY OF ANCIENT ITALIAN MOTORWAYS

ROAD WITH GOOD GEOMETRY, WITHOUT CROSSROADS, ONLY FOR ENGINED CARS

L'AUTOSTRADA FIRENZE-MARE.

GENOVA TRUCK MOTORWAY (1935)

488 km before IInd W.W.

1928 ITALIAN ROAD REORGANISATION

BIRTH OF A.A.S.S. (1° name of ANAS)

In the same period in Italy was born A.A.S.S., Independent organization for State Roads, to develop national road network.

To be free from general bureaucracy !

• A.A.S.S. aimed at Constructing new roads

With A.A.S.S. homogenization criteria, structures and methodologies were born to be applied to the most important Italian roads

1928 FIRST ITALIAN GLOBAL ROAD MANAGEMENT

With A.A.S.S.was born a *ROAD MANAGEMENT SYSTEM* with numerous activities of maintenance and operation.

Roads were broken down into stretches under the supervision of a head-roadman.

"RED" HOUSES

"ALL IN HOUSE" SYSTEM

Roadmen operated locally for all problems, with special equipment, material warehousing and roadman houses. 23e Congrès mondial de la Route - Paris 2007

1928 - 1939 FIRST ITALIAN GLOBAL ROAD MANAGEMENT

All the ACTIVITIES were made "A POSTERIORI" with the criteria "repair what is broken" or "reintegrate the function interrupted"

Example: SNOW exploitation

A.A.S.S. roadmen were re-tracing road on a mountain pass, before re-opening it with rotary-type snow plough (1932) PREVENTIVE MAINTENANCE WILL BE BORN LATER, WITH HIGH TRAFFIC MOTORWAYS.

1956 First Italian Project-Financing : new motorways

IT IS THE MOST IMPORTANT EVENT AFTER THE DISTRUCTION AND RECONTRUCTION CAUSED BY II W.W. II generation of Italian motorways: the "Autostrada del Sole" Milan-Bologna-Florence-Rome-Naples (A1) 755 km BUILT IN 4 YEARS

Project manager autostrade Co.

24 m LARGE; 2 SEPARATED CARRIAGEWAYS; DISTANCE OF VISIBILITY ≥ 150m; FLEXIBLE PAVEMENTS IN BITUMINOUS MIXES

II GENERATION OF MOTORWAYS = TOLL MOTORWAYS

AFTER THE SUCCESS OF A1, THE DEVELOPEMENT OF THE NETWORK WAS SUBMITTED TO *"CONSTRUCTION AND MANAGEMENT CONCESSIONARIES"*

6000 Km WERE CONSTRUCTED IN 20 YEARS (integrated with OTHER 1000 CONSTRUCTED BY *ANAS* (THE OLD A.A.S.S.)

THE "CONCESSIONARIES" ALSO GAVE BIRTH TO THE MODERN MAINTENCE and EXPLOITATION of ROADS

1970 – Modern Road Maintenance and Management

With *autostrade Co.(the greatest of the concessionaries)* the modern exploitation was born (made not only directly but also with external firms).

TRANSFORMING THE "ALL IN HOUSE" SYSTEM, USED BY ANAS

Another very important transformation was:

ALL ACTIONS HAD TO BE PREVENTIVE OR IN REAL TIME

Example: SNOW Exploitation

ICE CONTROL AND SNOW REMOVAL ARE MADE WITHOUT STOPPING THE TRAFFIC (from 1965) 23e Congrès m

1980 – Programmed Maintenance (P.M.)

P.M. was first born for the PAVEMENTS

P.M. ANSWERS TO THESE QUESTIONS

- WHERE WORK - WHEN WORK - HOW WORK

HOW MUCH WORK COST

USING SPECIFIC MEASURES

1980 – Programmed Maintenance (P.M.)

1st - STUDY AND MEASURE THE DEGRADATION with TECHNICAL PARAMETERS

2nd - DESIGN AND IMPLEMENT REPAIR WORK

From 1983

Degradation measured by Performance Indicators

The use of Performance Indicators allows the **PREVISION** of **RUPTURES** and thus the exploitation of P.M. called:

1980-1990 – Programmed Maintenance (P.M.)

1st - MEASURE THE DEGRADATION

TO IMPLEMENT PAVEMENT P.M. A SERIES OF SUB-INDICATORS (Technical Parameters) WERE DEFINITED :

•ADHERENCE

- •TEXTURE
- EVENESS

•BEARING CAPACITY •ROLLING NOISE MEASURABLE WITH HIGH PERFORMANCE MACHINES

IN THIS WAY IT WAS DEFINED THE PERFORMANCE INDICATOR OF PAVEMENT:

PAV

1980 - 1990 – Programmed Maintenance (P.M.)

1975 - 1985 – Programmed Maintenance (P.M.)

2nd - DESIGN AND IMPLEMENT REPAIR WORK

ADVANCED STUDIES ON PAVEMENTS Started in 1977

(USING RESULTS FROM EXPLOITATION OF ROADS VERIFIED WITH FULL SCALE EXPERIMENTS)

From the results of this experiment, the measure of different aggressiveness or heavy vehicle.

1980 - 1998 – Programmed Maintenance (P.M.)

2nd - DESIGN AND IMPLEMENT REPAIR WORK

2nd - DESIGN AND IMPLEMENT REPAIR WORK

INNOVATIVE TECHNOLOGIES - IN SITU HOT RECYCLING

Started in 1985

INNOVATIVE TECHNOLOGIES – P.C.P. INSERTION

Started in 1990

"P.C.P." Polyfunctional Composite Pavement

POROUS FRICTION COURSE

CONCRETE SLAB

LEAN CONCRETESUBBASE

NOT BINDED FOUDATION (or foamed bitumen mix in place)

CONTINUOUS REINFORCING CONCRETE SLABS inserted in cracked old pavement

LAYING TRAIN

2nd - DESIGN AND IMPLEMENT REPAIR WORK INNOVATIVE TECHNOLOGIES – *IN SITU* COLD RECYCLING

On site COLD recycling approach

Started in 1999

•with modified bitumen emulsion and cement

 with foamed bitumen and cement

One century of Italian Pavement Evolution

PAVEMENTS FRIENDS OF THE ENVIRONMENT

One century of Italian Pavement evolu

TEROTECHNOLOGICAL APPROACH FOR ALL PARTS OF ROAD STRUCTURES

THE SAME APPROACH USED FOR THE PAVEMENT WAS USED ON ALL PART OF ROADS, DEFINING SPECIFIC TECHNICAL PARAMETERS (T.P.) AND PERFORMANCE INDICATORS.

DIAGNOSTIC OF THE STATE AD REHABILITATION TECHNICS ARE DEVELOPED – WE SHOW PRINCIPAL RESULTS

TEROTECHNOLOGICAL APPROACH FOR BRIDGES

One century of Bridges Earth Quake security

Antiseismic devices evolution Connected to the bearing devices

1907-1960 Nothing

TEROTECHNOLOGICAL APPROACH FOR BRIDGES

One century of Bridges Earth Quake security

Antiseismic devices evolution From 1990 - Italy

TEROTECHNOLOGICAL APPROACH FOR BRIDGES

One century of Bridges Earth Quake security

Antisismic devices evolution FROM 1990 - Italy

II EVOLUTION

Always to retrofit old bridges and also for new ones

ALL DIRECTIONS DEVICES

ALL DISSIPATORS REVERSIBLE

DEFORMABLE FRAMES

TEROTECHNOLOGICAL APPROACH FOR ROAD SAFETY MANAGEMENT

PROVE CRASH

CESANO 1964

ROAD PASSIVE SAFETY – SAFETY BARRIERS

First modern safety barriers 1964 Massive use for motorway center lane

Verified in ANAS Center of CESANO 1° Italian CRASH TEST facility

NO VARIATION UNTIL 1987

ROAD SAFETY MANAGEMENT

ROAD PASSIVE SAFETY – SAFETY BARRIERS

ROAD SAFETY MANAGEMENT

ROAD PASSIVE SAFETY – SAFETY BARRIERS

1

1° GENERATION STEEL VAWE ARE TOO MUCH HIGH

ON THE STEEL VAWE 2° GENERATION STEEL BARRIERS TRANSFORMED WITH TRIPLE VAWE BEAM LOWER (less 90 cm)

BUT THE REAL "REVOLUTION" HAS BEEN

23e Congrès mondial de la Route - Paris 2007

THE HEAD CAN IMPACT

ROAD SAFETY MANAGEMENT

ROAD PASSIVE SAFETY – SAFETY BARRIERS

From 1985

CONCRETE BARRIER NEW JERSEY PROFILE "MOVEABLE"

Dynamic control

Moveability

Up - down on the barrier profile, Without vehicle and barrier damages <u>in the low energy</u> <u>crashes</u>

<u>For heavier crashes</u>, the barrier moves and dissipates energy (friction on the ground)

NO PROBLEMS FOR THE HEAD!!

BRIDGE SAFETY MANAGEMENT

From 1990 CONCRETE BARRIER NEW JERSEY PROFILE "MOVEABLE" ALSO FOR BRIDGES

1,2,3 Retaining Devices

the deadly falls

From 1995 - ENVIRONMENT MANAGEMENT

All part of the road can protect the land/environment: many solution has been developed

ENVIRONMENT MANAGEMENT

ITALIAN SYSTEM AIR POLLUTION is the last frontier **ECOLOGICAL** of control of pollution using the **KIT** elements of the road themselves. In artificial Air pollued cutting inlet **U** artificial Depolluted section air outlet Catalyzer) Side view

ACTIVE SYSTEMS (VACUUM CLEANER EQUIPPED BY CATALYST) INSTALLED IN LONGITUDINAL TUNNEL

ITALIAN SYSTEM ENVIRONMENT MANAGEMENT

Air pollution is the last frontier of control of pollution using the elements of the road themselves.

Other action:

(Japanese system)

filtered air

From 2005 This **ECOLOGICAL KIT** can be inserted on side of every road section (on the cutting too)

FINAL CONSIDERATIONS

THE NUMERICAL ROAD ONE MEASURE FOR EVERYTHING, EVERYTHING MEASURED

ITALIAN EXPERIENCE SHOWS THAT THE MANAGEMENT WITH MEASUREMENT IS THE BEST ONE

The PERFORMANCE INDICATORS MANAGEMENT

THIS APPROACH WAS USED ALSO IN ALL ACTIONS FOR THE ROAD MANAGEMENT

NOT ONLY FOR THE ROAD STRUCTURES, BUT ALSO:

• FOR THE TRAFFIC FLOW

From 1999

• FOR THE CUSTOMER SATISFACTION

FOR EVERYTHING, EVERYTHING MEASURED PERFORMANCE INDICATORS NEEDS FOR •SECURITY COMFORT **•TRIP TIMES** SERVICES •ENVIRONMENT

E NUMERICAL ROAD

UALITY ROADS: Safe, Comfortable, Rapid, Clean and Silent

MUST BE SHARED WITH THE USER.

THIS REQUIRES

23e Congrès mondial de la R

THE PUPPETMAN

- M.B. maintains the forecast level of the Quality of the road
- M.B. measures traffic and meteorological conditions
- M.B. exchanges information between different road managers
- M.B. diffuses traffic data among the users

THIS IS THE FUTURE

