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ABSTRACT 
 
The discrete element method (DEM) originally applied to the study of jointed rock masses 
was quickly adapted and generalized to other studies, such as the structural behaviour 
masonry bridges. This method is well-suited for the representation of predominantly block-
discrete structures. The existent formulations consider blocks, rigid or deformable, or by 
rigid particles. To enlarge its domain of application a rigid mixed plane model of discrete 
elements was developed, including both blocks and particles. This makes it possible to 
analyse a masonry arch bridge, modelling the arch and the spandrel walls with blocks and 
the fill with particles. This model follows the classic specification of the DEM, introducing 
some new concepts, namely, the definition of a new type of contact and the generation of 
the mesh of particles. The developed 2D algorithm allows the determination of the 
eigenvalues and eigenvectors of the structure, which is useful to calibrate the numerical 
model. The application of the mixed discrete element method to the quasi-static analysis of 
structures is specially indicated for the calculation of the bearing capacity and respective 
collapse mode of masonry arches bridges, and an example of this type is presented. 

1 INTRODUCTION  

This communication presents the numerical mixed discrete elements method (MDEM) for 
the plane case. This formulation is termed “mixed” because it includes both polygonal 
discrete elements and circular discrete elements. It was developed in the last three years 
by the first of the authors while preparing his PhD thesis [1]. The algorithm was translated 
into a computer program written with Compaq Visual FORTRAN [2], due to the tradition of 
use of this computer language by the structural engineering research community. The 
method follows closely the discrete element method (DEM) for blocks [3] and for particles 
[4] and its main application is the calculation of the load capacity of masonry arch bridges. 
 
The plane model developed includes rigid discrete elements (DE) whose geometry is 
either polygonal, of three to five vertices, which are referred to in the text by “blocks”, or 
circular, which are referred by “particles”. Each element may have up to three degrees of 
freedom, two translational and one rotational components. Each block is geometrically 
defined by the vertices’ Cartesian coordinates and each particle is defined by its radius 
and the coordinates of its centre of mass. All the geometric properties are calculated from 
this data. 
 
The mechanical interaction between the discrete elements is represented by deformable 
point contacts associated to a constitutive law. Thus, in what can be thought of as part of a 
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discretization process, the surface of each block is replaced by a finite number of suitably 
located points, which are the potential contact points. One contact is established whenever 
one of those potential contact points crosses the external envelope of a nearby discrete 
element. The interaction forces developed in this contact point are a function of the 
resulting interpenetration of the two contacting elements. The constitutive model for the 
contact interface can be formulated in terms of either stresses or resultant forces. The 
stress formulation is more appropriated when the stress evolution needs to be thoroughly 
quantified, as is the cases of large discontinuities in massive rocks or when the 
displacements’ history is determining. The formulation by forces is simpler and can be 
selected for the determination of the collapse load of structures because the local 
deformability is not critical for the determination of the collapse mechanisms. Note that for 
the DEM with rigid discrete elements the contacts’ deformability embodies the 
deformability of the whole structural system and thus it should be calibrated through lab 
tests to guaranty an adequate global behaviour. 
 
In general terms, the DEM consists in the alternate application of the law of motion at the 
level of the elements and a constitutive law at the level of the contacts. In each iteration 
the law of motion gives the generalized displacements of the discrete elements and the 
constitutive law defined by a displacement-force relation gives the contact forces 
associated to these generalized displacements.  
 
The sections 2 to 6 describe the MDEM, including the motion law, contact’s constitutive 
law, contact definition, detection and updating, critical time step computation and the 
automatic mesh generation. Section 7 illustrates the application of the method with an 
example. 

2 MOTION OF THE DISCRETE ELEMENTS  

In the global coordinates reference system the motion of the mass centre of each discrete 
element requires the consideration of two translational and one rotational components,  

1 2( , , )u u θ . The three equations of movement are given by 
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where iu  and ω  are the displacement components and the angular velocity of the centre 
of mass, m  and I  are inertial properties of the discrete element and each dot denotes one 
derivative with respect to time t. The resulting force components, iF , and moment, M , 
referred to the centre of mass are given by 
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where D
iF  and DM  are the generalised damping forces, C

iF  and CM  result from the 
contact forces, G

iF  refers to the mass forces and Q
iF  and QM  result from other externally 

applied forces . 
 
For a quasi-static analysis, the DEM requires the inclusion of numerical damping in the 
equation of motion in order to dissipate the kinetic energy, which allows to consider this as 
a dynamical relaxation method. Three types of damping where considered: constant global 
viscous [5], adaptive global viscous [6] and local non-viscous [7]. For the particle mesh 
definition the inertial properties where also modified in order to optimize the number of 
iterations the method requires to converge. For this last case, due to the immateriality of 
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time for a quasi-static analysis, the time step is fixed and the value for the inertial 
quantities results from the stability condition. 
 
This DEM uses the explicit (finite) central differences method for the time integration of the 
motion equations (2.1) [8]. Because explicit methods are only conditionally stable, the time 
step t∆  can not exceed a maximum value usually named critical time step which depends 
of the largest frequency, see section 5. 
 
The central differences scheme gives 

 ( ) ( )2 2 2 21 1,t t t t t t t t t t
i i iu u u

t t
ω ω ω+∆ −∆ +∆ −∆= − = −

∆ ∆
&&& & &  (2.3) 

and  

 ( ) ( )/ 2 / 21 1,t t t t t t t t t t
i i iu u u

t t
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&  (2.4) 

where θ  is the rotation of the discrete element (positive in the anti-clockwise direction), 
and the superscript indicates the time. Using (2.3) the expressions (2.1) are approximated 
by 

 2 2 2 2,
t t

t t t t t t t ti
i i

F Mu u t t
m I

ω ω+∆ −∆ +∆ −∆= + ∆ = + ∆& &  (2.5) 

which give the translational and rotational velocities at the half-step corresponding to time 
/ 2t t+ ∆ . The translational and rotational generalized displacement increments during the 

time step are given by 
 2 2,t t t t t t t t

i iu u t tθ ω+∆ +∆ +∆ +∆∆ = ∆ ∆ = ∆&  (2.6) 
and, using (2.4), the total generalized displacement are 
 ,t t t t t t t t t t

i i iu u u θ θ θ+∆ +∆ +∆ +∆= + ∆ = + ∆  (2.7) 
Finally, t t

ix +∆ , the new position of the centre of mass of the discrete element is given by 

 
t t t t t
i i ix x u+∆ +∆= + ∆  (2.8) 

The updating of the coordinates, per instance of the vertex A of a block, must include the 
rotation motion 
 A, A, A, 2t t t t t

i i ix x u t+∆ +∆= + ∆& , (2.9) 
where A, / 2t t

iu
+∆&  is the velocity of the vertex A which is given by 

 ( )A, 2 2 2 A,
3 , , 1,2t t t t t t t t

i i ij j ju u e x x i jω+∆ +∆ +∆= − − =& &  (2.10) 

where ijke  is the permutation symbol. 

2.1 Adaptive viscous global damping 
Using a damping coefficient proportional to the inertial properties gives the generalized 
viscous damping forces 
 , ,,D t t D t t

i iF m u M Iα α ω= − = −&  (2.11) 
where α  is the viscous damping coefficient. Considering (2.5), (2.2), (2.11) and 
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During the iteration process the initially non-equilibrated generalized forces t
iF  and tM  will 

progressively tend to zero with t, in case it converges to a static solution. 
 
In order to reduce the number of iterations required for convergence time the coefficient α  
should not be kept constant in (2.12). In the adaptive viscous damping formulation [6] this 
coefficient is varied in such a way that the rate between the damping power and the kinetic 
energy variation in time ,t D t t

kR P E≡∑ ∑ &  is kept constant, per instance 0.5tR = , where 
the sums include all the discrete elements and 
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where avdα  is the adaptive viscous damping coefficient. In order to guaranty a gradual 
variation of α  avoid sudden large instead of using the value of avdα  resulting from the 
imposing a constant value to the rate above, the employed value is t tα +∆  which depends 
on the difference between the value tα  used in the previous time step and the ideal value 

avdα  by means of 
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with 1.05iδ =  e 0.90dδ = . Because the initial value 0α  is too large the coefficient 
employed will be progressively reduced. But if an oscillation of the motion suddenly 
appears it will be gradually incremented. Nevertheless, note that α  is not allowed to ever 
surpass 0α , because that could originate an extremely small time step. As the structural 
system tends to a steady state (either resting static equilibrium or collapse) the coefficient 
suffer progressive reduction, reducing the computation time. 

2.2 Local non-viscous damping 
This formulation uses the following non-viscous damping forces 
 ( ) ( ), 2 , 2sgn , sgnD t t t t D t t t t

i i iF u F M Mβ ω β−∆ −∆= − = −&  (2.15) 

where ( )( ) ( ) ( )sgn f x f x f x≡  is the sign function and β  is a non-viscous damping 
coefficient. Introducing definitions (2.15) in (2.5) gives 
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 (2.16) 

For the coefficient β  [9] and [10] propose the values of 0.8 and 0.7 for systems of, 
respectively, blocks and particles. For the mixed method treated in this communication the 
first of those values has been used with success. 

2.3 Mass scaling 
The mass scaling, in the case of a quasi-static analysis, consists in the use of fictitious 
values for the inertial quantities [11], reducing the number of iterations required to attain 
the equilibrium, or collapse, for a pre-defined admissible error. These fictitious values are 
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obtained multiplying the real ones by a scale factor. As referred above, due to the 
conditional stability of the integration scheme adopted, the time step to be used must be 
smaller than a critical value, i.e. 

 min min min
cr tr rot

max max
2 min ,T m It t

k k
ϕ

π
 

∆ ≤ ∆ = ≅ ⋅   
 

 (2.17) 

with ] ]0,1ϕ∈  and where minT  is the minimum period of the structural system and the point 
translational and rotational stiffnesses are given by  

 ( ) ( )tr rot 2 rot 2
, , block , , particle ,

1 1 1
2 , 2 , 2
C C C

s i n i s i n i s i
i i i

k k k k r k k k r k
= = =

= + = + =∑ ∑ ∑  

where C is the total number of contacts of each discrete element and the subscripts s and 
n denote the contact shear and normal directions, ,s nk k  being thus the corresponding 
initial elastic stiffnesses, see [11]. Expression (2.17) shows that if the inertial properties m  
and I  are increased the time step is also increased. Per instance, the critical time step 
can be increment up to ms

crt∆  if the real inertial properties are multiplied by,  

 
2ms ms ms

min min cr

min min cr
,m I t

m I t
 ∆

=  ∆ 
 (2.18) 

When, during the iterative process, the contacts are updated C can be modified which 
implies updating also ms

crt∆ . 

3 CONSTITUTIVE FORCE-DISPLACEMENT LAW 

Each contact has a pair of opposite normal (compression) forces and a pair of opposite 
shear (or tangential) forces acting on the two contacting elements. The magnitudes of 
these forces depend upon the constitutive law and the magnitudes of the normal and 
tangential relative displacements. If, at time t, the coordinates of the contact point C are 

,C t
jx  the velocity at time 2t t+ ∆  of this contact point C for the discrete element X  (which 

denotes one of the two contacting elements A  and B ), is given by, 
 , , 2 , 2 , 2 , ,

3 ( ), , 1,2C t t t t t t C t t
i i ij j ju u e x x i jω+∆ +∆ +∆= − − =X X X X& &  (3.1) 

where, when standing alone, the superscript X  refers to the centre of mass of the element. 
In the case of a contact involving one vertex of a block (or two) the velocity of the contact 
point, which does not coincide with the vertex, see [12], can be approximated by (2.10). At 
the contact point C the relative velocity between the two discrete elements as components 

, ,C C C
i i iu u u= −B A& & & , where, for simplification, the reference to time will be omitted in the 

following. For a local system of coordinates associated to the contact’s principal directions, 
the tangential (shear) and normal components of the relative velocity is 

 ( )T 2 11

1 22

,
C C

C Cs
C C
n

n nu u
n nu u

     
= =     −   
n n

& &

& &
 (3.2) 

where in  are the components of the contact’s normal in the global system of coordinates, 
which is an unitary vector pointing from the DE with the smaller reference label to the DE 
with the larger reference label, see [1]. The contact’s relative displacement increment 
during a time step, which is given by the difference between the displacements of the 
contacting elements on the contact point, is approximated by 

 
C C
s s
C C
n n

u u
t

u u
   ∆ ∆

= ∆   
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&

&
 (3.3) 

and the corresponding tangential and normal (compression positive) force increments are 
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If the time step is small enough for ignoring the effect of the rotation of the local system of 
coordinates in the following sum, the total tangential and normal contact forces would be 

 
*C C C

s s s
C C C
n n n

F F F
F F F

     ∆
= +     

∆     
 (3.5) 

where the superscript * denotes that these are not definitive values because the strength 
criteria must still be considered: (1) if * 0C

nF <  the contact becomes virtual and 
0C C

s nF F= = ; (2) if the value of the compression surpasses the maximum allowable stress 
of any of the two contacting elements this maximum value is imposed; (3) if *

,max
C
s sF F> , 

( )*
,maxsgnC C

s s sF F F= ⋅ , where, if 0C
nF > , the maximum shear force is defined by the Mohr-

Coulomb’s criterion ,max tanC
s nF c F φ= + , c ,φ  being the cohesion and angle of friction. The 

generalized forces, associated to the centre of mass of the discrete elements, due to the 
contact phenomena are defined by 

 ( ) ( )
1

3 3 2

, , , 1, 2,
C C CC

i i i i C s
C C C C CC

ij i j j ij i j j n

F F F F FF
i j

M e F x x M e F x x FF

 = − =     = =     
= − = − −      

A B

A A B B n  (3.6) 

4 MECHANICAL INTERACTION BETWEEN THE DISCRETE ELEMENTS  

The model of the mechanical interaction between two discrete elements at a contact point 
is described in the previous section. A simple and systematic definition of the contacts is 
required in order to guaranty the consistence of the geometric relations and the efficiency 
of the contact detection method. As an example of the consequences of this requirement, 
in order to allow for an unambiguous definition of the contacts, the vertices of the blocks 
are regularized using circular arches which are tangent to the adjacent sides [13] and 
whose centre are named theoretical vertices, see Figure 1. 

4.1 Contacts’ geometry 
There are eight different types of contacts: (1) corner-corner; (2) corner-edge; (3) edge-
corner; (4) circle-circle; (5) corner-circle; (6) edge-circle; (7) circle-corner; (8) circle-edge, 
where the terms corner and edge are used for blocks and the term circle for particles. 
Each contact is characterised by eight data items: (1) the numbered contact reference 
label iC  (i = 1, …, number of contacts); (2) the contact type C

iΓ ; (3) the contact point 
coordinates ( ), , 1, 2C C

i i jx j≡ =x ; (4) the components of the contact surface’s normal ,
C

i i jn≡n ; 

(5) the numbered reference labels of the two interacting discrete elements, { },i iA B  with 

i i<A B  (the subscript i will be normally omitted); (6) the coordinates of the centres of mass 
of the interacting discrete elements, , ,, ,i i i j i jx x≡A B A Bx x ; (7) and (8) the coordinates of each 

vertex A B A B
, ,, ,i i i j i jx x≡x x  and of each theoretical vertices , ,, ,A B A B

i i i j i jx x≡x x  of the contacting 
elements. A virtual contact is established, before real contact occurs, whenever the 
distance between two elements becomes smaller than a predefined tolerance distance, in 
order to reduce the number of times the contact detection subroutines are accessed, 
because these are quite greedy in terms of computing time. The contact forces exist only 
for real contacts, which correspond to effective (numerical) overlapping and null (physical) 
gap or separation. A local rectangular system of coordinates ( , )Ct n  is defined for contact 
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C , whose origin is located on the contact point and whose normal axis is perpendicular to 
the surface of contact, see Figure 1. The type classification of the contact results is defined 
by two geometrical conditions. For a type 1 contact there are two vertices potentially in 
contact, A  and B , and the geometrical conditions are (a) the projection of the theoretical 
vertex B  on the edges adjacent to A  must fall inside the circular region and vice versa; 
(b) the discrete elements superposition Cd  (negative when effective overlapping or 
superposition occurs) must satisfy two admissible tolerances 0Od >  and 0Gd < , the first 
one controlling effective contact and the second effective separation,  
 ,C C

O G A Bd d d d AB R R− < < = − −  (4.1) 
For contacts of types 4, 5 and 7 the criteria are similar to those above, but simpler as it 
may be unnecessary to verify if the contact occurs in a circular region. For contacts of 
types 2, 3, 6 and 8 similar geometric conditions apply. For instance, for a type 2 contact 
the projection of the theoretical vertex A  over the edge adjacent to vertex B  must fall 
outside the corresponding circular arch and the conditions (4.1) are satisfied for the 
redefined superposition C

Ad D R= − , where D  is the distance between the theoretical 
vertex A  and the edge adjacent to vertex B . The contacts of the types 1, 4, 5 and 7 and 
of the types 2, 3, 6 and 8 have coordinates given by, respectively, 

 ( )
1X

T1 1 1 1 1 2 1
X

2 2 2 2 2 1 2

, ,
2

2

tC A C C e eC
e eCAC A C C e e

d
x x n x x n ndR dx x n x x n n

               = + + = − =               −              

n n  (4.2) 

where X A≡  for 3 and 6 type contact and X B≡  for 2 and 8 type contact and ( , )et n  is the 
local referential whose origin is located on the vertex adjacent to the contacting edge first 
encountered when rotating in the anti-clockwise direction from the contact point, with en  
perpendicular to this edge. 1dt  is the distance between the vertex adjacent to the 
contacting edge and the projection of the theoretical vertex on the edge. 

 
Figure 1 – Types of contact between discrete elements. 

4.2 Contacts’ detection and updating 
During the iterative process the DEM detects automatically when a new contact is created 
or when a previous contact vanishes. This requires a simple representation of the 
potentially contacting zones and a robust and efficient numerical algorithm which detects 
and updates the contacts [11], [14], [15]. The developed detection algorithm is based on 
Cundall’s method [14] and the enveloping volumes method [16]. A rectangular mesh is first 
represented over the structural domain, see Figure 2, which allows that an incidence 
matrix with a column for each of the cells formed by the rectangular mesh and a line for 
each discrete element. Thus all the elements totally or partially contained in a given cell 
appear in the same column of the incidence matrix. Next each discrete element is 
circumscribed with a circular envelope, see Figure 2. Then, a cell by cell search of 

ΓC4=2 or 3 

x1

x2 

R 

 
dC 

R 

Cn
dr ΓC3=6 or 8 

 ΓC1=4 

 ΓC2=5 or 7

Ct
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potential contacts is carried out. In each cell, a envelope by envelope search is made and 
if two envelopes overlap then a more geometrically accurate local search based on the 
conditions established in the previous section is performed, which identifies effective 
contacts. 
 

 
Figure 2 – Rectangular mesh and enveloping volumes. 

 
In order to avoid performing the contact detection in all the iterations the program 
establishes and keeps track of an approximated value for the maximum accumulated 
displacement since the last contact detection executed. Whenever this displacement 
exceeds rdη  (where rd  is the rounding parameter of the blocks’ vertices, see Figure 1), 
with the coefficient 1.1η =  by default, a new contact detection is performed and the 
incidence matrix updated. For systems with many discrete elements, per instance 3D 
systems or simulation of flows with particles, more advanced methods, per instance using 
binary trees, should be used. 

5 TIME STEP DEFINITION 

The selection of the time step t∆  is relevant because the overall computational cost is 
proportional to the total number of iterations required for the process to converge. The 
stability of the recursive numerical operator an the integration accuracy are the two most 
important factors to consider when seeking for the maximum allowed value for t∆ . 
 
For stability the spectral radius of the recurrent operator must be smaller than the unity. 
For the direct integration of (2.1) and in order to satisfy the last condition, the conditionally 
stable central difference scheme requires a time step which satisfies [17], cr mint t T π∆ ≤ ∆ = , 
where minT  is the minimum non damped period of the DE system. The code developed 
includes also the capability to perform an eigenvalue analysis, under the assumption of 
elastic joints, which allows the validation of the simplified formulas adopted in practice. In 
general the integration accuracy will also be verified if t∆ satisfies the previous relation. By 
considering a regular mesh and a unique DOF global mode with maximum relative 
displacement at the contacts [18] establishes a simplified expression for minT  which gives 

 cr min max2t m kλ∆ =  (5.1) 
where the parameter λ  ∈ ]0,1[ accounts for a number of contacts larger than one (in 
general, use λ  ∈]0.1,0.5[), minm  is the minimum DE mass and maxk  is the maximum 
contact stiffness. It is also possible to calculate crt∆  using Gerschgorin theorem [19] to 
define a maximum value to the frequency as the maximum rate between stiffness and 
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corresponding inertial property for all the degrees of freedom of the system considered 
isolated, ( )tr rot

cr min ,t m k I k∆ =  with tr rot,k k  as defined in section 2. 
 
To compute crt∆  from the eigenvalue problem it is necessary to calculate the stiffness 
matrix of the structural system [1]. Because the stiffness of the present model results from 
the effective point contacts in operating in the elastic range the global stiffness matrix is 
obtained adding up the contribution of all the eligible contacts, whose elementary stiffness 
matrix in local coordinates is given by 
 

 
2 2

2 2

0 0
0 0

( (
0 0

0 0
( (

) )

) )

s n s s n s

n s n n s n

C n s s n s n n s n s s n s s n n n s

s n s s n s

n s n n s n

n s s n s s n n n s n s s n s n n s

k d k k d k
k d k k d k

d k d k d k d k d k d k d d k d d k
k d k d k

k d k k d k
d k d k d d k d d k d k d k d k d k

k

− −

− −

− + − − −

− −

− −

− − − − +

 




= 





A B

A B

A A A A A A A B A B

A B

A B

B B A B A B B B B B

k










 (5.2) 

where X
,n sd  is the distance from the centre of mass of the discrete element X  to the contact 

point, measured along the local reference system directions. 

6 GENERATION OF THE DISCRETE ELEMENTS MESHES  

The characterization of the geometry of existing masonry structures can be performed by 
different methods, either classical, based on reading drawings and/or on measuring 
through tape, tachometer and laser distance meter; either more recent ones, based on 
photographic techniques, usually designated by remote sensing (photogrammetry) [20] 
[21], and in situ tests including ultrasounds [22]. 
 
In accordance to these different methods, the geometry of the spatial mesh of discrete 
elements is obtained either by automatic generation of several types of structural elements 
based on a few main geometric parameters or by reading ASCII files, like DXF (which 
basically is a tagged graphic data representation format). The standard structural elements 
include semi-circular arches, segmental (shallow/deep) arches, buttresses, columns, walls, 
spandrel walls and the fill material. 
 
The mesh of particles, according to the type of fill, allows for regular distributions, either 
rectangular or hexagonal, and for random distributions, with a constant or variable radius. 
According to the method of expansion of the radius [23] the generation of the particles’ 
random mesh requires the definition of (1) a rectangular area which defines the main 
domain as there are no particles in its exterior; (2) a set of withdrawn convex and closed 
sub domains (circular, rectangular, triangular, circle segment, etc.) which define zones 
inside the main domain where no particle is accepted. The admissible domain is given by 
the main domain without the withdrawn sub domains. In order to guaranty a predefined 
porosity, when they are first randomly distributed all over the admissible domain, the 
particles possess a reduced radius, Figure 3(a), and only afterwards is the radius 
expanded. Then, by means of the application of the MDEM the system is allowed to 
converge to a configuration which corresponds to the predefined porosity (or stress field), 
Figure 3(b). Before the distribution of the particles a layer of blocks is placed above the 
pavement level (which corresponds to upper facet of the allowable domain), Figure 3(a). 
These blocks are removed after the expansion stage. After the conclusion of the definition 
of the mesh of the discrete elements, it can be visualised either still inside the Compaq 
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Visual FORTRAN environment or with AutoCAD [24] through the help of a built-in VBA 
(Microsoft Visual Basic for Applications) macro. 
 

  
(a) (b) 

Figure 3 – Discrete elements mesh (a) before and (b) after the expansion stage. 

7 APPLICATION EXAMPLE 

This section follows very closely [25] which contains some additional details. The collapse 
of the Bridgemill masonry arch bridge, built in 1869 at Girvan, Scotland, is studied for the 
illustration of the presented algorithm. Hendry, Davies et Royles measured its geometry, 
determined its mechanical properties, performed a load test and registered the value of the 
load previous to its collapse [26]. Due to the shortage of records of this nature, this 
example has been used by several researchers in order to validate their numerical models 
[27]. In the following some considerations about the values selected to the parameters 
required to define the properties of the structural materials used in the bridge. The discrete 
element mesh employed models the arch and (the fixed) abutments with blocks and the fill 
with particles. The numerical collapse load is compared with the in situ value obtained by 
Hendry. et al [26]. However [26] lacks some decisive parameters. This entailed (1) the 
selection of some values referred to in the specialized literature for similar structures (2) as 
well as a controlled estimation of other values in order to improve the numerical results 
when these are compared with those obtained in situ. 
 
The bridge arch is parabolic with a free span of 18.3 m, 8.3 m width, 2.85 m rise at 
midspan and it is made of 62 sandstone voussoirs, with a depth h  = 0.711 m. For this 
span/rise ratio the parabola is quite flat, almost coincident with a circular arc, so that it is 
admitted as a segmental arch [26] [28]. The distance from the keystone extrados to the 
pavement surface is 0.478 m, including the depth of fill at crown (0.203  m), the sub-base 
thickness (0.125 m) and the bituminous surfacing (0.150 m). 
 
The voussoirs and the spandrel walls have a density bγ  = 2100 kg / m3, a deformation 
modulus bE  = 15 000 MPa and a compressive strength bf  = 43,8 MPa. The fill material, 
composed from a mixture of gravel, sand and clay, has a density fγ  = 1890 kg / m3 and a 
deformation modulus fE  = 40 MPa, [27]. 
 
As a first estimate, the normal nk  and the shear sk  contact elastic stiffnesses per unit area, 
which are equivalent stiffnesses resulting from the combined effect of the blocks and the 
joint, satisfy,  

 1 1 1 1;cm cm

n n b s s b

l l
k k E k k G

= + = +
′ ′

 (5.1) 

where cml  is the length defined by the centres of mass of the two contacting blocks 
(measured along the contact’s normal), nk′  and sk ′  are the effective joint normal and shear 
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stiffnesses per unit area and bG  is the blocks’ elastic shear modulus [29]. Table 1 gives 
the values considered for the parameters for the three types of contact, i.e. between 
blocks b-b, between particles p-p and mixed b-p. The values adopted for _,b-bk′ , _,b-pk′  and 
the Poisson’s ratio ν  refer to Lagoncinha’s Bridge, Portugal, and were experimentally 
determined by Costa [20]. 
 

Table 1 – Stiffness of the contacts. 
 c.m.l  ν  E  G  nk′  sk′  nk  sk  
 m ― GPa GPa GPa / m GPa / m GPa / m GPa / m

b-b 0.3208 0.2 15.000 6.250 5.400 0.590 4.840 0.573 
b-p 0.1500 0.2 15.000 6.250 65.000 27.000 4.840 0.573 
p-p 0.1500 0.2 0.040 0.017 65.000 27.000 1.596 0.666 

 
For the b-p contacts formulae (5.1) gave 0.079 GPa / mnk =  and 0.033 GPa / msk = , but 
these values had to be increased ( _,b-p _,b-bk k≡ ) in order to avoid excessive superposition. 
For the p-p contacts the values considered for nk′  and sk′  to those corresponding to the b-p 
contacts. 
 
The values used for the p-p contact stiffnesses nk  and sk  should be such that the fill’s 
overall rigidity is similar to fE . In order to calculate them the arbitrary values _,p-p _,b-pk k′ ′≡  
were assumed, the values of nk  and sk specified by (5.1) calculated and referred to as 

,(1) 0.266 GPa / mnk =  and ,(1) 0.111 GPa / msk = . Then a 1 m  side square’s sample was 
isolated from the fill’s mesh, Figure 4, replacing, when possible, partially truncated 
particles by smaller ones. Subsequently this sample was confined with three fixed blocks, 
placed below and on its sides, Figure 5. A fourth block weighing 2.6 kN and free to move 
vertically was then subjected to load increments of 25 kN, Figure 5, and its vertical 
displacement measured, Figure 6. This procedure was performed for values of nk  and 
sk given by one, two, four, six and eight times ,(1)nk  and ,(1)sk , all the other parameters 

being kept fixed. The average tangent deformation modulus is respectively 22, 28, 34, 42 
and 48 MPa and the secant deformation modulus (difference between first and last results) 
16, 26, 12, 14 and 18 MPa. The three last values are significantly higher if the first four 
load steps are ignored, 28, 43 and 54 MPa, see Figure 6. In order to satisfy the value 
specified for fE  the stiffnesses adopted for the p-p contacts should be about 

,(1)6 1.596 GPa / mn nk k= =  and ,(1)6 0.666 GPa / ms sk k= = , see Table 1. 
 

 
Figure 4 – Definition of the sample of particles. 
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(a) (b) 
Figure 5 – (a) Confinement of the sample and (b) loading of the confined sample. 
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Figure 6 – Stress-strain relation for the confined particles. 

 
Table 2 gives the remaining parameters required. Following [30] and [31] the sandstone 
tensile strength ,b tf  is ignored. The fill material’s tensile strength ,f tf  is also ignored. As 
there is no record of the internal friction angle φ , the value used for all types of contact 
was the one obtained from lab tests for the Serra do Pilar Monastery, Portugal, [32]. For 
the p-p and b-p contacts a cohesion 10 kPafc =  was adopted, as justified by the values in 
the range [ ]1.0,20.0 kPa  specified by [33] e [34], and for the b-b contacts 0bc = . For an 
analysis per unit width, the contact’s influence area is given by 1c c ca l l= × = , where cl  is 
the contact’s influence length. If cl  is allowed to vary for the b-b contacts, a minimum must 
be defined and, following Coulomb [35], the value ,min /10c bl h=  was selected. If cl  is fixed 
then it is given by (1) for the b-b contacts, half the distance between the contact points 
along the height of the blocks, ,fixed ( ) / 2 0.3455 mc b rl h d= − = , (2) for the b-p and p-p 
contacts, the average of the diameters of the particles. 
 

Table 2: Further properties for the discrete elements and joints. 
 c  φ  , ,,b t f tf f ,1bf  ,c fixedl  ,mincl  
 kPa º MPa MPa m m 

b-b 0 35.6 0 43.8 0.3455 0.0711 
b-p 10 35.6 0 ― 0.1500 ― 
p-p 10 35.6 0 ― 0.1500 ― 

 
In the following analyses the dead weight of the structure is “applied” first, then the 
corresponding stable configuration is computed, and only after this are the other loads 
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applied. The arch’s abutments are fixed, and their upper face length is 2.0 m. The arch 
model contains one block for each voussoir and the fill mesh contains 1984 particles. The 
point (knife) load is applied at quarter span, by means of an additional block weighing 
17.72 kN / m (147 kN) prevented from either rotate or move horizontally, in increments of 
200 kN. 
 
For this example the non-viscous local type of numerical damping was used and the 
contact influence length was kept fixed. The collapse load is 3147 kN, and the maximum 
compression value  was below bf  (2.90 MPa for 2947 kN). Figure 7 compares the load-
displacement curve for the quarter span voussoir with the one obtained by Hendry [27]. 
The qualitative difference between the two curves can be summarized in the difficulty that 
the MDEM reveals in accommodating the arch’s progressive stiffness reduction. This 
might be a consequence of the adoption of rigid discrete elements or of the purely linear 
elastic range used in the constitutive law. The subject is still under investigation. 
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Figure 7 – Load-displacement relations. 

 
Figure 8 to Figure 11 illustrate the collapse mechanism, revealing the prior rupture of the 
fill material due to the effect of the block that stands the point load and the collapse of the 
arch for what appears to be an almost direct application of this block on the arch extrados. 
 

 
Figure 8 – Mixed discrete element model configuration for 800 kNF = . 

 

 
Figure 9 – Configuration for impending collapse. 
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Figure 10 – Configuration for incipient effective collapse. 

 

 
Figure 11 – Configuration for effective collapse. 

 

8 CONCLUSIONS 

This communication presents the mixed discrete element method and its application for 
the numerical computation of the collapse load of masonry arch bridges. The interaction 
between rigid discrete elements considered includes the new block-particle type of contact. 
The semi-automatic mesh generation routines are specialized to the major types of 
discrete elements. The example which concludes the communication illustrates the good 
performance of this method, which is still under development. 
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