

World Road Association

John Bjerrum Ministry of Transport Denmark

PIARC TC 4.4, Bridges and Related Structures

Topic 2: INCREASE OF DURABILITY AND LIFETIME OF EXISTING BRIDGES

World Road Association

PIARC

Working group

John BJERRUM, Denmark (Chairman) Dr. Satoshi KASHIMA, Japan Edward ZABAWA, Poland Claude MONETTE, Belgium, Walloon Tim LONNEUX, Belgium, Flanders Mariano ROMAGNOLO, Italy Jean-Pierre JORIS, Switzerland Takashi NOSE, Japan Gediminas VIRŠILAS, Lithuania **Eduard WINTER, Austria** Maurizio LIEGGIO, Italy Ales ZNIDARIC, Slovenia **Timo TIRKKONEN, Finland**

oad Directorate

World Road Association

Content

The idea of the study
 Limitation
 Data collection
 Analysis of data
 Examples

6. Exploitation of the study

Road Directorate

Road Directorate

Association mondiale de la Route

World Road Association

The idea of the study (1) Detect methods about: Increase durability and lifetime Minimize maintenance cost

 Minimize traffic restrictions during repair works

 through suggesting new, alternative repair/rehabilitation methods

Road Directorate

Association mondiale de la Route

World Road Association

The idea of the study (1) **Detect methods about:** Increase durability and lifetime Minimize maintenance cost Minimize traffic restrictions during repair works FOCUS ON EXISTING BRIDGES through suggesting new, alternative repair/rehabilitation methods

Road Directorate The idea of the study (2) Association mondiale de la Route AIPCR **Detection of damage** or functional problems PIARC World Road Traditional way New, alternative Compare Association of solving the way of solving problem the problem Give recommendation on future design

🕁 VRoad Directorate

Association mondiale de la Route

World Road Association

Limitation of the study (1)

"Existing bridges" include:

- Road and pedestrian bridges
 - Traffic tunnels < 100 metre
- Retaining walls
- Culverts
- Protection galleries

oad Directorate

mondiale de la Route

World Road Association ullet

Association Limitation of the study (2)

"Structural components" include:

- **Superstructure**
- Substructure

Bridge ulletcomponents/furniture (Expansion joints, bearings) etc.)

🐨 🔽 Road Directorate

Association mondiale de la Route

World Road Association

Data collection (1)

Questionnaire forwarded to:

PIARC TC 4.4 members and corresponding members

(approx. 70 persons in 33 countries)

Data collection

Association mondiale de la Route

World Road Association

49 RESPONSES/EXAMPLES from 22 countries/regions:

- Switzerland
- Finland

•

- USA, Virginia
- Canada, Quebec and Ontario
- Belgium, Flanders and Walloon
- Austria
- Romania
- Hungary
- Sweden
- Poland
- Slovenia
- Italy
- Lithuania
- Denmark
- Japan
- Norway
- United Kingdom
- South Africa
- New Zealand
- Spain

Type of responses/examples:

Association mondiale de la Route

ightarrow

World Road Association Precast elements used instead of in-situ replacement of bridge deck

 Application of cathodic protection to stop further corrosion instead of carrying out of traditional concrete repairs

Applying of probability-based capacity calculations instead strengthening the pile foundation

World Road Association

Analysis of data

Extent:

ightarrow

49 responses/examples from 22 countries

Problem:

- How to sort and present the responses/examples ?....

World Road Association

Analysis of data

Division, 4 main groups:

- 1. Whole bridge/culverts
- 2. Superstructure, slab and beams
- Substructure, pier and foundation
- 4. Bridge components/furniture

World Road Association

Analysis of data

The 4 main groups are divided into 3 subgroups (problems):

Insufficient load carrying capacity
Deterioration
Insufficient serviceability

World Road Association

Example

Strengthening with carbon fibre lamellae instead of concrete "shoe" with post tension cables

World Road Association

Example

Re-lining of a corrugated steel culvert instead of construction of a new bridge

World Road Association

Example

Road Directorate

All lanes are closed for a certain period instead of closing lane by lane in off-peak hour¹⁷s

World Road Association

Preparing a bridge-over-bridge and working day and night instead of only night work for replacement of expansion joints

AIPCR

World Road Association

Exploitation

Report incl. an inventory or library of examples of:

 Increasing of durability and lifetime

Minimizing maintenance cost
Minimizing traffic restrictions during repair works

Road Directorate

World Road Association

Exploitation

Report present recommendations to avoid the same damage or problem occurring in the future.

– don't make the same mistake again!

Road Directorate

World Road Association

Exploitation

TC 4.4's hope/expectation:

Inspire agencies, consultants and contractors - to select optimal maintenance solutions

World Road Association

