Maintenance of Road Bridges in Japan

Y. Morito (Ministry of Land, Infrastructure and Transport) Y. Harada (Ministry of Land, Infrastructure and Transport) S. Kashima (Japan Bridge Engineering Center) S. Fukunaga (Japan Bridge Engineering Center)

Administrative Proportion of Bridges in Japan 148,223 Bridges

Bridges with the length longer than 15m

Material Proportion of Bridges in Japan 148,223 Bridges

Bridges with the length longer than 15m

Number of Bridges by Year Completed

Bridges with the length longer than 15m

Increase in Number of Bridges over 50 Years Old

Bridges with the length longer than 15m

Number of bridges

Problem Very Rapid Aging of Japanese Bridges Funds for Reconstruction is Insufficient

Solution Introduction of Concept of Asset Management

Major Damage of Bridges in Japan

1. Fatigue cracks at corner of steel pier, and slab Almost all piers will be repaired in FY 2007.

2. Chloride damage in concrete bridges

3. ASR in concrete bridges Almost all bridges will be repaired in FY 2007.

4. Fracture and spall of concrete slab

Fatigue Cracks at Welding of Steel Pier

Relationship between Percentage of Fatigue Crack Damage and Number of Large Vehicle on Steel Bridge

Repair Work for Crack

Drilling of stopping hole to prevent extension of fatigue crack, and stiffening by steel plate

Chloride Damage in RC Bridge

Coastal Area of Japan Sea

Chloride Damage in PC Bridge

Repair Work for Chloride Damage

Partial Repair: Sacrificial anodes and filling concrete

Total Repair: Sacrificial anodes and carbon fiber sheets

Damage due to Alkali Silica Reaction

Breaking of Reinforcing Bars by ASR

Damaged Gas Pressure Weld Point (Main Reinforcements)

Breaking at Corner of the Stirrups

Repair Work for ASR

Damage

Paint Coating

Injection of ASR-retarding agent (Sub-nitric acid lithium) into cracks

Wrapping by Carbon Fiber Sheets

Spalling of Concrete Slab

Repair Work for Fatigue Crack of RC Slab

Water-proof, injection, and carbon fiber sheets

Extra lateral beams

Extra stringers
Steel plate adhesion

Damage by Earthquake in Japan

Falling Down of Superstructure by Niigata Earthquake (1964, M7.5) Collapse of Substructure by Kobe Earthquake (1995, M7.3)

Earthquake-proof Work

Movement restriction chains

Strengthening of RC piers by RC, steel plate, or carbon fiber sheet

Connection of adjoining girders

Earthquake-proof work: *All of bridges on national expressway and national roads will be completed in 2007. *Other bridges on priority roads will be

completed in 2007.

Reasons for Bridge Reconstruction 1986 - 1996

Relationship between type of repair and cost

Case 1 : Preventive repair
Minimizing Life Cycle Cost
Case 2 : Repair at the repairable limit state

Outline of periodic bridge inspection (National roads)

Frequency	Once every 5 years
Elements	All members
Scope	*Check of type and condition of damage *Evaluation of degree of damage *Determination of necessity of counter- measures *Recording data
Method	Close-range visual inspection

Classification of necessity of countermeasures (Periodic inspection manual)

Classification	Description
A	Very little or no damage: No need for repair
В	Repair may be necessary depending on condition
S	Need for in-depth investigation
С	Prompt repair or other remedial action required
E	Emergency measures must be taken

Thank you for your attention