

Toward an improvement of the environmental assessment of Alternative Materials for road construction

Denis FRANÇOIS

- → LCPC
- Chargé de Recherche
- Denis.Francois@lcpc.fr

The context

90's: growing demand for using Alternative Materials

→ Clarifying the environmental relevance

Can the Road Soil prevent the spread of heavy metals?

In France: some field experiments

- Back analysis
- Capacity of retention
- Stability of fixing
- Acceptability

An assessment method for Road Soils

23e Congrès mondial de la Route - Paris 2007

Objectives

To analyse practices of study for testing at road scale To derive rules of behaviour and use for different AM

Results

Strong concern about MSWI bottom ash: 12 Case Studies + 5 others AM

15 CS with environmental aim

Varied alternative materials / structures / layers

Problem of scaling: Laboratory prediction / On-site performance Difficult comparisons: inter-material & inter-site (use scenarios)

→ To harmonize practices of study: Methods and Criteria

Schema for environmental assessment

From the **Eco-compatibility** approach (ADEME)

« when pollutant fluxes released by wastes [...] are compatible with those that are acceptable for receiving environments of the site »

Eco-comp.	Source	Flux	Transport	Flux	Impact on aquatic (F_{CA}) or terrestrial environments (F_{CB})
Road scenario	AM	F _S	into the Road Body	F _T	Road Soil

... considering specificities of the Road scenario

Other pollution sources: chronic, seasonal, accidental **RS**: poor in clay and organic material, compacted

→ Diagnosis on old sites

On-site diagnosis

MSWI residue (bottom and fly ash) < year 1991

Site A: 22-year old - Site B: 20-year old – Subbases

Results for Road Soils:

Heavy Metals contents (Cd; Cu; Ni; Pb; Zn) decrease from contact with AM to deeper levels

Comparisons with reference values:

Intervention Limit Values (NL-Soil Protection Act): **[RS]** = 5 to 82% of C-ILVs; 24 % on average Statistics on similar ordinary soils (France-INRA): 75% of **[RS]** < 9th decile of contents

Dynamic of fixing and Stability at longer term?

Laboratory simulations in columns

RS: Long-term pollution barrier toward migration ?

Source: Fresh production MSWI bottom ash (Cr; Cu; Pb; Zn) Different RS tested : 50-cm thick subbases Unsaturated conditions

Final L/S ratios (I/kg)	0.34	2.75	5.50
« On-site time » (year)	1	10	20

So cm

24 cm

Leachate

feeding

Final contents:

No increase below –5 cm : Consistent with site observations

Higher increase when higher L/S

BCR protocol Partitioning results:

1st cm: more than 50% of the **HM** content not easily exchangeable

Exchangeable fraction decreases fast from 1^{st} to 2^{nd} cm

Lessons from comparisons to reference values

Normative approach:

→ Detail on the Effect induced by the alternative material ?
Statistical approach:

→ Specificities of RS (clay, organic matter, compaction)

→ A tool suitable for RS, allowing:

- to highlight **Effects** specifically induced by the AM application in an open environment

- **Comparisons** between alternative materials; application layers; different structures; different natures of RS

A specific assessment method: The road system

Positioning of the Reference soil, Definition of the Origin level

A specific assessment method: Indicators

Definition of C_{origin} and Road Effect formula

A specific assessment method: Illustrations

Conclusion

Road Soil: un-addressed target until now

Capacity to serve as a chemical barrier toward downstream targets Prevention of pollutant dispersion Stability of fixing until medium-term To be studied for longer term Acceptable content increase on-site

RE indicator: appraisal of the relative effect of the whole road structure

Takes the local context into account (Reference Soil)
Allows comparisons between sites, chemicals and materials
→ Calibration with regard to classical materials is necessary