

Human Powered Transport

Hillie Talens

talens@crow.nl

Members of subgroup 3

Christian MAUROIT, Belgium Raj GHAMAN, United States Farshid KAMALI, United Kingdom Tsuyoshi KUROSAKA, Japan Hillie TALENS, Netherlands Jürgen GERLACH, Germany Bystrik BEZAK, Slovakia Dominique PRAT, France

Content

- Scope of the project
- Importance of Human Powered Transport (HPT)
- Objectives
- Working method
- Results
 - Conclusions/recommendations

Definition

Non-motorised transport:

All trips done by animal or human powered vehicles or by humans without any motorised support

Scope of this project

Human Powered Transport on land (more precise on the street)

In other words: cycling and walking

Importance of Human Powered Transport

- → Health
- Economy
- Safety
- Environment

Health

0.5 to 1 hour exercise per day:

in a gym oras a commuter

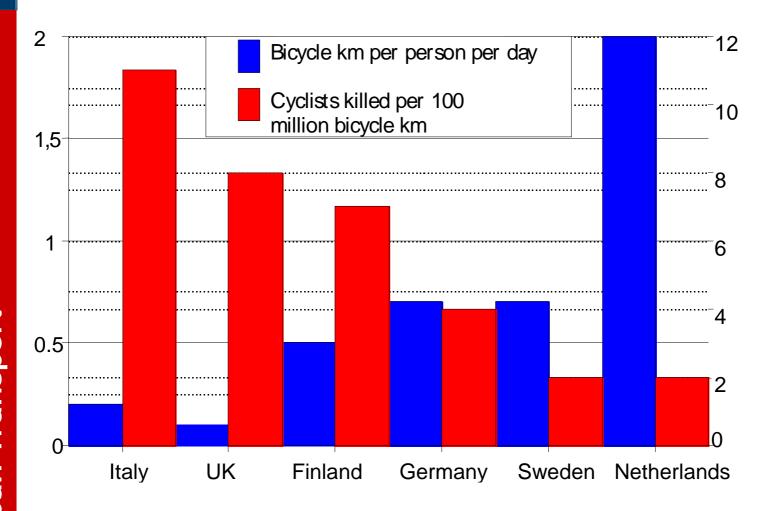
Economy

Cheap to buy, to use and to maintain

- 12 bicycles on 1 car parking place
- Walking is most economical for distances less than 5km

Cycling is most economical for distances up to 10km

- Pedestrian can carry over
 25kg
- Cyclist can carry over 2m³



12 OP DE PLEK VAN 1

Safety in numbers

Environment

- → HPT uses hardly any fuel
- HPT has no emission of dangerous gasses
- HPT makes no noise

Objectives

 Learn to understand reasons for using HPT
 Identify social, economical and safety barriers for these modes

Develop strategy tools that can be used to increase the use of HPT

23rd World Road Congress - Paris 2007

Working method

- Fact sheets
 Survey
- Design aspects

City fact sheets

Helsinki, Finland Warsaw, Poland Bergen, Norway Tokyo, Japan Yokohama, Japan London, UK Strasbourg, France Lyon, France Rennes, France Paris, France

Bordeaux, France St. Etienne, France Toulouse, France Utrecht, Netherlands Enschede, Netherlands Antwerp, Belgium Hasselt, Belgium Brussels, Belgium Bratislava, Slowakia Münster, Germany

Information

- Population
- Modal share
- Bike ownership
- Car ownership
- Safety devices
- Facilities
- → Main purpose

Survey

Detailed information: \rightarrow Tokyo (ave bike and walk) Münster (high bike) \rightarrow Utrecht (high bike) → Paris (low bike) London (low bike) \rightarrow Lyon (high walk) \rightarrow Strasbourg (high walk) Antwerp (low walk) \rightarrow Hasselt (low walk)

23rd World Road Congress - Paris 2007

Information

- City density
- Income per capita
- Income structure
- Social structure
- Topology
- Weather/climate
- → Facilities (12)
- Security measures
- Price of car parking

Design aspects

Information on design aspects from:

- 🔶 Australia
- → Belgium
- 🔶 Canada
- Finland
- France
- → Germany
- 🔶 Great Britain
- Hungary

- Japan
- Netherlands
- Norway
- Poland
- Slovakia
- Sweden
- → USA

Design aspects bicycles

- Volume mix with motorised traffic
- Volume mix with pedestrians
- Design speed
- Standard size
- Priority
- Position on the road
- Position on roundabouts
- Position at traffic lights
- Parking
- → Width lane and path

Design aspects pedestrians

- Volume mix with bicycles
- Design speed
- Design width
- Position on the road
- Width pavement (side walk)

Results

Fact sheets Survey Handbooks

Fact sheets

- Large correlation between use of bicycle and bike ownership
- Hardly any correlation between availability of bike lanes and use
- No correlation between bike transported on bus and use
- Small negative correlation between car ownership and walking

Survey I

Small correlation between income and bike use

Small relationship between income structure and walking or cycling

Survey II

Small correlation between topology and cycling and walking

No relationship between climate and walking or cycling

No relationship between facilities and walking or cycling

Survey III

Small relationship between price of parking and walking or cycling

No relationship between price of public transport and walking or cycling

Other findings

- A complete network is more important than limited facilities
- Free bike transport on public transport encourages bicycle use

Design Aspects: Bicycle facilities

Mix cars and bicycles:
 2,800 - 15,000pcu/day

Design speed for bicycles: 20-40km/h

Standard size (width): 0.6-1.0m

With bicycle lane: 1.2-2.2m

Width bicycle path: 1.5-3.0m

23rd World Road Congress - Paris 2007

Design Aspects:Pedestrian facilities

Design speed:
0.8-1.5m/sec
Standard size (width): 0.75m
Width of pavement:
1.2-3.0m

Design Aspects: Extra

bewaakt

Importance of Public Spaces

Smart sollutions: contra flow at one way streets bicycle rent at railway stations

Conclusions I

Bicycle for trips less than 10km

Walking for trips less than 5km

Cycling and walking is good for our health and the environment

→ HPT against congestion

23rd World Road Congress - Paris 2007

Conclusions II

- No logical reasons for NOT using HPT
- Image can be a social barrier to HPT
- Increase number of cyclists results in decrease number of fatalities

Actions

Cyclist is not a pedestrian with wheels
 Bicycle is not a poor man's Mercedes

Wow, she can afford to use the bicycle

